早期胚胎发育起始于高度特化的精子和卵子的结合,从而形成全能性的受精卵。在这个过程中,表观遗传信息重编程对于擦除亲本表观遗传记忆和重建细胞全能性十分重要。研究结果表明,哺乳动物早期胚胎发育过程中DNA甲基化会在全基因组范围内发生显着的“擦除-重建”过程。与此截然不同的是,斑马鱼和非洲爪蟾蜍等非哺乳动物早期胚胎发育过程中全基因组DNA甲基化一直维持在相对较高的水平。目前人们对于不同物种在早期胚胎发育过程中为什么选择完全不同的DNA甲基化重编程模式并不清楚。
近日,清华大学颉伟课题组在《Science Advances》期刊以长文形式在线发表了题为“DNA甲基化遗传和增强子去记忆化重塑表观屏障保障胚胎发育的研究论文。
脊椎动物的基因组大部分区域通常都是高甲基化的,而只有调控序列会出现低甲基化,并且这种低甲基化与调控序列的活性通常正相关。颉伟和孟安明课题组前期的研究结果表明,基因组上的一类重要调控元件增强子在斑马鱼配子受精前后会从低甲基化的状态变成高甲基化的状态,从而去掉亲本的表观遗传学记忆(低甲基化状态)。这种现象被命名为增强子的去记忆化 (dememorization)。直到种系特征性发育阶段(斑马鱼胚胎受精后24小时),增强子的DNA甲基化才会被合子表达的TET蛋白特异性地擦除,从而激活下游的细胞特异基因的表达。然而,斑马鱼维持整体甲基化并且增强子去记忆化的功能,以及胚胎增强子如何在高DNA甲基化的基因组环境下激活下游基因表达仍是未解之谜。
为了回答这些问题,清华大学颉伟课题组利用未成熟卵母细胞原位显微注射技术(OMIS),在斑马鱼里建立了DNA甲基转移酶dnmt1的母源敲低模型,证明了全基因组范围内大幅度降低斑马鱼早期胚胎的DNA甲基化水平会导致早期胚胎致死。这些结果表明,高DNA甲基化是斑马鱼早期胚胎正常发育所必需的。为了研究DNA甲基化擦除引起胚胎致死的原因,研究人员检测了dnmt1母源敲低胚胎的转录组、组蛋白修饰在基因组内的分布变化。结果显示,DNA甲基化的降低伴随着成体细胞增强子和成体细胞特异表达基因的异常激活,提示增强子的去记忆化以及整体DNA甲基化对维持是沉默体细胞增强子的重要机制。
但有趣的是,胚胎增强子也是高甲基化,但并不影响其在胚胎发育过程中发挥功能。为了回答这个问题,研究人员进一步研究发现,斑马鱼早期胚胎的增强子区域CG密度低,使其对DNA甲基化不敏感,而成体细胞的增强子区域CG密度高。所以,在斑马鱼早期胚胎中,高DNA甲基化能够选择性沉默成体细胞的增强子,保障了转录组的时序性。基于以上结果,研究人员揭示了整体DNA甲基化的维持和增强子的去记忆化是斑马鱼早期胚胎发育的转录程序的重要保障,能够防止成体细胞基因的提前激活,调控基因有序表达。
基于上述研究结果,研究人员提出一个模型来解释哺乳动物和其他的脊椎动物为什么采用了不同的DNA甲基化重编程模式。哺乳动物和非哺乳动物可能都是通过改变DNA甲基化水平去除亲本记忆。哺乳动物通过大规模擦除基因组DNA甲基化去除亲本记忆,而斑马鱼等非哺乳动物则通过甲基化增强子区域来去除亲本记忆,最终都达到了重置发育时钟的目的。这项工作不仅回答了斑马鱼早期胚胎发育中DNA甲基化的调控作用,同时加深了我们对于细胞重编程以及全能性获取的理解。
医荟园,高端医学SCI科研服务平台
医荟园是中国领先的专业科研与英语母语学术编辑服务供应商,主要为非英语国家科研工作者提供最优质SCI﹑留学文书编辑和各类科研相关服务。目前,医荟园主要提供专业的SCI母语翻译,临床医学翻译,
医学论文翻译,医药认证翻译,医疗器械临床试验,海外医疗培训,医学SCI培训等。我们深知每一篇学术论文对于每个客户而言,都具有十分重要的价值。因此,我们将“专注专业,服务领先,客户至上”作为服务的核心价值观,以满足客户需求为前提,为客户提供高质量服务。
医荟园致力于搭建中国与世界科研互动的桥梁,为中国科研与学术研究贡献自己应有力量。同时,医荟园也将秉承科学、严谨的工作精神,凭借卓越的团队学术优势为客户提供一流的科研学术服务。医荟园汇聚了来自全球著名100多所顶尖高等教育学府的600多名各专业博士团队的雄厚学术力量。我们的愿景是为中国学术科研做出贡献,创造美好幸福生活;我们的使命是聚焦于客户需求,提供有竞争力的解决方案与服务,持续为中国学术做出贡献;我们的目标是成为国内最专业学术信息综合服务供应商。
声明:本网所有文章(包括图片和音视频资料)系出于传递更多信息之目的,且明确注明来源和作者,不希望被转载的媒体或个人可与我们联系(yhysci@yhysci.com),我们将立即进行删除处理。所有文章仅代表作者观点,不代表本站立场。